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Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic
careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from
training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the
predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy
availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the
high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury,
or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates
the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the
risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.
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In athletics, the epidemiology of injuries occurring before or
during an international elite competition has been extensively
described (Edouard et al., 2015, 2016; Feddermann-Demont
et al., 2014). Unfortunately, there is less accurate information
available when it comes to injuries occurring during training
(out of competition) periods and/or in subelite or recreational
athletes. In elite track and field athletes, there were approximately
81 injuries per 1,000 athletes registered to a World Championship
(Feddermann-Demont et al., 2014), in other words, approximately
one in 12 registered athletes will incur injury during International
Athletics Championships. This is important since approximately
half of these injuries will result in a time loss and absence from
sports, including both training and competing (Feddermann-
Demont et al., 2014). Among these injuries, skeletal muscle is
the principal type, accounting for 40.9% of all recorded injuries
(Edouard et al., 2016), with 58% of these injuries resulting in time
loss during the International Athletics Championships between
2007 and 2015. Hamstring injury is by far the most frequent injury
(approximately 17%), and it is more frequent (relative risk: 1.94) in
male athletes than in female athletes. These hamstring injuries are
more frequently described in sprinters, whereas overuse injuries of

the lower legs are more frequently reported in middle-long distance
runners and race walkers. Elite female athletes experience more
(relative risk: 3.1) stress fracture injuries than male athletes
(Edouard et al., 2015), and this is explained by a higher incidence
of Relative Energy Deficiency in Sport Syndrome (Mountjoy et al.,
2014) and the associated reduced calcium absorption, fixation, and
bone mineral density in this population.

Preparticipation predictors for Championships injury and
illness have been identified (Timpka et al., 2017). For instance,
athletes who reported an illness symptom causing anxiety before
the competition were five times more likely to sustain an injury
during the championships. Moreover, intensive training camps or
tapering periods are often associated with increased stress and
altered appetite response and decreased food intakes (both quanti-
tative and qualitative aspects) in power-trained athletes. These
findings attest to the important role that anxiety, stress, and their
consequences play on the athlete’s nutritional status and in the
development of an injury during a major competition. Therefore,
providing stress management and nutritional interventions as
potential preparticipation interventions may reduce the onset of
an acute injury is relevant.

Although injuries could be classed as a very likely outcome of
sport, it is important to recognize that appropriate nutritional
strategies have the ability to reduce the risk of injuries as well
as enhance the recovery if an injury should occur. All athletes
should engage with a properly qualified nutritionist who will
promote a “food first approach” to prevent and treat injuries.
Although the main preventative nutritional strategy will be to
ensure adequate total energy intake and appropriate dietary intake,
there are some supplements that have the potential to help. This
review will focus on nutritional strategies to assist with the most
common injuries, that is, skeletal muscle, bone, tendon, and
ligament. We include a review of the extant literature that has
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looked at nutrition to prevent injuries and increase repair, as well as
considering the change in energy requirements during the injury
period.

Nutrition to Prevent and Treat Muscle
Injuries

There is limited direct research on nutrition to prevent/treat muscle
injuries, with most research originating from laboratory-induced
muscle damage to study delayed onset muscle soreness (Owens
et al., 2019). Although such studies provide insights into potential
nutritional strategies, it must be stressed that there are substantial
differences between delayed onset muscle soreness and a major
muscle tear, both in terms of the structural damage, as well as the
level of immobilization and unloading that may occur. However,
given that there are no published placebo-controlled, randomized
control trials on nutrition to prevent or treat muscle injuries
following a “true” muscle injury in elite athletes, the laboratory-
induced muscle damage literature currently provides the best
evidence base to help guide practice, while, of course, taking
into consideration the limitations of this approach. From a nutrition
perspective, it is important to consider the potential of nutrition to
assist in injury prevention and prevent the loss of lean mass during
immobilization, and to consider the change in energy requirements
during the injury period along with any strategies that may promote
muscle repair.

Given the crucial role of dietary protein in muscle protein
turnover, it is not surprising that much attention has been given to
dietary protein in the prevention of muscle injuries. It is accepted
that the provision of dietary proteins enhances the adaptive pro-
cesses to both resistance- and endurance-based exercise (Phillips &
Van Loon, 2011), and it is, therefore, attractive to hypothesize that
increasing dietary protein may alleviate markers of muscle damage.
However, the evidence to support this hypothesis is, at best,
equivocal, with some studies reporting a benefit (Buckley et al.,
2010; Cockburn et al., 2010; Nosaka et al., 2006), whereas others
show no benefit (Blacker et al., 2010; Wojcik et al., 2001), albeit in
laboratory-induced muscle damage studies. In a recent systemic
review, the balance of the evidence suggested that protein supple-
ments taken acutely, despite increases in protein synthesis and
anabolic intracellular signaling, provide no measurable reductions
in exercise-induced muscle damage and enhanced recovery of
muscle function (Pasiakos et al., 2014). This lack of an effect
may be explained by the differing time courses between an acute
muscle injury and muscle protein turnover, with adaptations to
muscle protein turnover being a relatively slow process (Tipton
et al., 2003) compared with the rapid changes that occur following
an injury. It can, therefore, be concluded that, given sufficient
dietary protein is provided in the general diet of an athlete,
additional protein intake will not prevent muscle injury or reduce
postexercise muscle soreness. However, to date, this hypothesis
has not been fully explored in elite athletes following a true injury
and, therefore, case study data may help to provide further insights.

Although additional protein may not prevent a muscle injury,
increased dietary protein may be beneficial after an injury both in
terms of attenuating muscle atrophy and promoting repair. Limb
immobilization reduces resting muscle protein synthesis as well as
induces an anabolic resistance to dietary protein (Wall et al., 2013),
although, again, it must be stressed that such studies are laboratory
based and not following a true injury. This anabolic resistance can
be attenuated (although not prevented) through increased dietary

amino acid ingestion (Glover et al., 2008). It is beyond the scope of
this manuscript to fully discuss what is appropriate protein intake
for athletes and, for this, the reader is directed to several excellent
reviews (e.g., Morton et al., 2018; Phillips, 2012; Stokes et al.,
2018; Tipton & Phillips, 2013). Contrary to popular belief, athletes
engaged in whole-body resistance training are likely to benefit from
more than the often cited 20 g of protein per meal, with recent
research suggesting 40 g of protein may be a more optimum
feeding strategy (Macnaughton et al., 2016). Protein intake should
be equally distributed throughout the day, something that many
elite athletes fail to achieve (Gillen et al., 2017), with many athletes
consuming the majority of their protein in their evening meal, with
less consumed at breakfast and lunch. In terms of an absolute
amount of protein per day, increasing protein to 2.3 g/kg body mass
reduces the loss of lean body mass (LBM) during reduced calorie
intake (Mettler et al., 2010), a strategy that could also prove useful
for the injured athlete. Taken together, despite the limitations of the
current literature base, injured athletes may benefit from increasing
their protein intake to overcome the immobilization-induced ana-
bolic resistance as well as helping to attenuate the associated losses
of lean muscle mass documented in injured athletes (Milsom
et al., 2014).

After a muscle injury, it is likely that athletic activities are
reduced, if not stopped completely, to allow the muscle to recover,
although some training in the noninjured limbs will likely continue.
This reduction in activity results in reduced energy expenditure,
which consequently requires a reduction in energy intake to prevent
unwanted gains in body fat. Given that many athletes periodize
their carbohydrate intake, that is, increase their carbohydrate intake
during hard training days while limiting them during light training
or rest days, it seems appropriate that during inactivity, carbohy-
drate intake may need to be reduced (Impey et al., 2018). It should
be stressed, however, that the magnitude of the reduction in energy
intake may not be as drastic as expected given that the healing
process has been shown to result in substantial increases in energy
expenditure (Frankenfield, 2006), whereas the energetic cost of
using crutches is much greater than that of walking (Waters et al.,
1987). Moreover, it is common practice for athletes to perform
some form of exercise in the noninjured limb(s) while injured to
maintain strength and fitness. It is, therefore, crucial that athletes do
not reduce nutrition, that is, under fuel at the recovery stage through
being too focused upon not gaining body fat; thus, careful planning
is needed to manage the magnitude of energy restriction during this
crucial recovery period. One thing that is generally accepted is that,
when reducing energy intake, macronutrients should not be cut
evenly as maintaining a high-protein intake will be essential to
attenuate loss of lean muscle mass.

Poor attention has been paid to dietary lipids in the prevention
of musculoskeletal injuries. In this context, mainly omega-3 poly-
unsaturated fatty acids (n-3 PUFA) have been studied because of
their anti-inflammatory properties. Many studies have investigated
the effects of n-3 PUFA supplementation on the loss of muscle
function and inflammation following exercise-induced muscle
damage, with the balance of the literature suggesting some degree
of benefit (e.g., DiLorenzo et al., 2014; Marques et al., 2015).
These supplements should be taken for a minimum of 2 weeks with
5 g/day of fish oil capsules (providing 3,500-mg eicosapentaenoic
acid and 900-mg docosahexaenoic acid) to permit detectable
increases in muscle n-3 PUFA lipid composition (McGlory
et al., 2014). This level of n-3 PUFA supplementation is far in
excess of what would be consumed in a typical diet and much
greater than most suggested supplement regimes. Given that it is
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not possible to predict when an injury may occur, it could be
suggested that athletes should take n-3 PUFA supplements on a
regular basis; however, the long-term daily dose requires further
investigation. Again, however, relying on findings from the
exercise-induced muscle damage model to rule on a benefit of
n-3 PUFA in macroscopic muscle injury prevention or recovery is
speculative at this stage.

There are a number of other nutrients that have some rationale
for supplementation to reduce the magnitude of muscle tissue
injury and/or promote healing. Many of these nutrition strategies
are claimed to work through either acting as an antioxidant or
through a reduction in inflammation. In reality, unless there is a
dietary deficiency, the vast majority of nutritional interventions
have limited research to support such claims. Some of the most
frequently studied and supplemented micronutrients to help with
skeletal muscle injury are summarized in Table 1.

Finally, consideration must be given to the balance between
muscle recovery and muscle adaptation. There is growing evidence
that nutritional strategies that may assist with muscle recovery,
such as anti-inflammatory and antioxidant strategies, may attenuate
skeletal muscle adaptions (Owens et al., 2019). It would, therefore,
be prudent to differentiate between an injury that requires time lost
from the sport and typical exercise-induced muscle soreness when
it comes to implementing a nutritional recovery strategy. Where
adaptation comes before recovery, for example, in a preseason
training phase, the best nutritional advice may simply to follow a
regular diet and allow adaptations to occur naturally.

Nutrition to Prevent and Treat Bone Injuries

Stress fractures are common bone injuries suffered by athletes that
have a different etiology than contact fractures, which also have a
frequent occurrence, particularly in contact sports. Stress fractures
are overuse injuries of the bone that are caused by the rhythmic
and repeated application of mechanical loading in a subthreshold
manner (McBryde, 1985). Given this, athletes involved in high-

volume, high-intensity training, where the individual is body
weight loaded, are particularly susceptible to developing a stress
fracture (Fredericson et al., 2007), and training time lost can be
significant (Ranson et al., 2010). The pathophysiology of stress
fracture injuries is complex and not completely understood
(Bennell et al., 1999), but some studies have suggested that
nutritional inadequacies could be considered a risk factor (Moran
et al., 2012). That said, there is little direct information relating
to the role of diet and nutrition in either the prevention or recovery
from bone injuries, such as stress fractures. As such, the comple-
tion of this article requires some extrapolation from the informa-
tion relating to the effects of diet and nutrition on bone health in
general.

Palacios (2006) provides a brief summary of some of the key
nutrients for bone health, which include an adequate supply of
calcium, protein, magnesium, phosphorus, vitamin D, potassium,
and fluoride to directly support bone formation. Other nutrients
important to support bone tissue include manganese, copper,
boron, iron, zinc, vitamin A, vitamin K, vitamin C, and the B
vitamins. Silicon might also be added to this list of key nutrients for
bone health. Given this, the consumption of dairy, fruits, and
vegetables (particularly of the green leafy kind) are likely to be
useful sources of the main nutrients that support bone health.

Of the more specific issues for the athlete, undoubtedly the
biggest factor is the avoidance of low energy availability, which is
essential to avoid negative consequences for bone (Papageorgiou
et al., 2018a, 2018b). Ihle and Loucks (2004) were among the first
to demonstrate this, showing that bone formation was reduced at an
energy availability (EA) of 30 kcal·kg LBM−1·day−1. More severe
reductions in energy availability to 10 kcal·kg LBM−1·day−1 had
the effect of both reducing bone formation and increasing bone
resorption, likely initiating a dual negative effect on the bone. This
seems like a serious problem, particularly if continued over time,
given that some amenorrheic athletes have been reported to have
energy availabilities of ∼16 kcal·kg LBM−1·day−1 (Thong et al.,
2000). Two studies from our own research group have used this
level of energy availability and shown that 5 days of low EA

Table 1 Nutritional Strategies Claimed to Help With Skeletal Muscle Injuries in Athletes

Micronutrient Rationale for supplement Suggested dose Key research

Vitamin D It is well established that many athletes are vitamin D deficient due
to a lack of sunlight exposure. Emerging evidence suggests that
vitamin D deficiencies can impair muscle regeneration following
damaging exercise both in vitro and in vivo.

2,000–4,000 IU D3 taken daily
during the winter months to
ensure serum 25(OH)D is greater
than 75 nmol/L with sensible sun
exposure in the summer.

Owens et al. (2015,
2018)

Vitamins C and E It has been claimed that increased free radical production increases
the magnitude of muscle damage following exercise and, therefore,
supplements with vitamins C and E could increase recovery time.
Literature, however, indicates that vitamins C and E have limited
ability to attenuate muscle damage or promote recovery.

No need for additional
supplementation.

Close et al. (2005);
Cobley et al. (2015);
Owens et al. (2019)

Polyphenols It is claimed that polyphenols may attenuate muscle damage caused
by inflammation and increase free radical production. Montmorency
cherries (Prunus cerasus) are suggested to help improve rate of
muscle function recovery after damage as well as reduce muscle
soreness and inflammation, especially in athletes consuming a low
polyphenol diet.

A diet rich in polyphenols (fruit
and vegetables) may be the best
strategy to augment recovery
from damaging exercise rather
than specific supplementation.

Bell et al. (2015);
Peeling et al. (2018)

Creatine Creatine monohydrate is one of the most widely used supplements to
support gains in strength and lean mass. Supplementation has been
shown to attenuate loss of upper arm muscle mass and strength
during limb immobilization, as well as increase muscle hypertrophy
following lower leg immobilization.

20 g/day for 5 days followed by
5 g/day thereafter.

Hespel et al. (2001);
Johnston et al.
(2009)
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(15 kcal·kg LBM−1·day−1) decreased bone formation and increased
bone resorption in women, but not in men (although some men were
affected; Papageorgiou et al., 2017). In athletes, this poses
the question of whether the effect of low energy availability on
bone is a result of dietary restriction or high exercise energy
expenditures. Recently, the effects of 3 days low energy availability
(at 15 kcal·kg LBM−1·day−1) achieved by diet or exercise on bone
turnover markers in active, eumenorrheic women were examined
(Papageorgiou et al., 2018b). Low EA achieved through inadequate
dietary energy intake resulted in decreased bone formation but no
change in bone resorption, whereas low EA achieved through
exercise did not significantly influence bone metabolism, highlight-
ing the importance of adequate dietary intakes for the athlete.

Evidence of the impact of low energy availability on bone
health, particularly in female athletes, comes from the many studies
relating to both the Female Athlete Triad (Nattiv et al., 2007) and
Relative Energy Deficiency in Sport Syndromes (Mountjoy et al.,
2014), with the latter also suggesting that this might also be an issue
for male athletes. A thorough review of these syndromes is beyond
the scope of the current article; however, those interested are
advised to make use of the existing literature base on this topic.
Maintaining an energy availability of 45 kcal·kg LBM−1·day−1 over
time is likely to be important in optimizing bone health in the
athlete and, potentially, in helping to protect the bone against the
development of bone injuries. That said, this is likely to be an
unrealistic target for many athlete groups, particularly the endur-
ance athlete (e.g., road cyclist, marathon runner or triathlete),
whose energy expenditure during training is likely to be high,
with a training schedule that limits the amount of time available for
fueling. This target may also be difficult to achieve in youth athletes
who have limited time to fuel given the combined demands of
school and training. In addition, a calorie deficit is often considered
to drive the endurance phenotype in these athletes, meaning that
work is needed to identify the threshold of energy availability
above which there are little or no negative implications for the
bone. However, a recent case study on an elite female endurance
athlete over a 9-year period demonstrated that it is possible to train
slightly over optimal race weight and maintain sufficient energy
availability for most of the year, and then reduce calorie intake to
achieve race weight at specific times in the year (Stellingwerff,
2018). This may be the ideal strategy to allow athletes to race at
their ideal weight, train at times with low energy availability to
drive the endurance phenotype, but not be in a dangerously low
energy availability all year round.

Moran et al. (2012) collected dietary intake data from military
recruits at the start and end of basic training using food frequency
questionnaires and compared the dietary intakes of the recruits who
suffered a stress fracture (n = 12) with those who did not (n = 62).
The development of stress fractures was associated with preexist-
ing dietary deficiencies, not only in vitamin D and calcium, but also
in carbohydrate intake. Although a small-scale association study,
these data provide some indication of potential dietary risk factors
for stress fracture injury. Miller et al. (2016) also demonstrated an
increased risk of stress fracture in athletes with low vitamin D
status, as assessed by circulating 25(OH)D3. Similarly, other
groups have shown a link between calcium intake and both
bone mineral density (Myburgh et al., 1990) and stress fracture
risk (Nieves et al., 2010) in athletes. Conversely, improving
vitamin D and calcium status with 800 IU/day vitamin D and
2,000mg of calcium supplementation has been shown to reduce the
risk of developing a stress fracture in military recruits (Lappe et al.,
2008). Despite these initially encouraging findings, there remain

relatively few prospective studies evaluating the optimal calcium
and vitamin D intake in athletes relating to either (a) stress fracture
prevention or (b) bone healing. For a more comprehensive review
of this area, readers are directed toward a recent review by Fischer
et al. (2018).

One further consideration that might need to be made with
regard to the calcium intake of endurance athletes (and possibly
weight classification athletes practicing dehydration strategies to
make weight) is the amount of dermal calcium loss over time.
Although the amount of dermal calcium lost with short-term
exercise is unlikely to be that important in some endurance athletes
performing prolonged exercise bouts or multiple sessions per day
(e.g., triathletes), this could become an issue. Under these circum-
stances, athletes should consider either a high-calcium preexercise
meal containing ∼1,300 mg of calcium (Haakonssen et al., 2015) or
a 1,000-mg calcium supplement (Barry et al., 2011), both of which
have been shown to limit disturbances to calcium homeostasis and,
potentially, the bone metabolic response to subsequent exercise.

Athletes are generally advised to consume more protein than
the recommended daily allowance of 0.8 g·kg BM−1·day−1, with
many athletes consuming 2–3 times this amount. Protein is a key
constituent of the bone’s structure, making up a substantial pro-
portion of its mass and volume (Zimmermann et al., 2015). As
such, it would seem logical to propose that dietary protein intake is
important for bone health, but the role of protein (particularly
animal protein sources) in bone health has been questioned, with
some suggesting that it could be detrimental because of the acidic
load that it creates; termed the “acid-ash hypothesis” (Barzel &
Massey, 1998). More recently, however, several reviews (Rizzoli
et al., 2018) and meta-analyses (Shams-White et al., 2017, 2018)
have opposed this view and have shown that there are no negative,
and some beneficial, consequences of a high-protein intake for
bone health, particularly when consuming adequate calcium.

Maintaining an appropriate dietary intake is important for
maintaining fitness and health and/or in regaining fitness after
injury in athletes. Conversely, inadequacies in dietary intake have
a negative effect on physical performance, which might, in turn,
contribute to an increased risk of injury. This is as likely to be the
case for the bone as it is for other tissues of importance to the
athlete, like muscles, tendons, and ligaments. Despite this, there is
a relative dearth of information relating to the effects of dietary
intake on bone health in athletes and, particularly, around the
optimal diet to support recovery from bone injury. In the main,
however, it is likely that the nutritional needs for bone health
in the athlete are not likely to be substantially different from those
of the general population, albeit with an additional need to
minimize low energy availability states and consider the poten-
tially elevated calcium, vitamin D, and protein requirements of
many athletes.

Nutrition to Prevent and Treat Tendon
and Ligament Injuries

Tendinopathy is one of the most commonmusculoskeletal issues in
high-jerk sports. Jerk, the rate of change of acceleration, is the
physical property that coaches and athletes think of as plyometric
load. Where the plyometric load is high across a tendon, such as for
the patellar tendon in hurdlers and in the plant leg of jumpers and
throwers, tendinopathy rates are high: approximately 30% and 45%
for elite athletes, respectively (Lian et al., 2005). In support of the
role of jerk in the development of tendinopathy, in distance
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runners, where jerk across the patellar tendon is lower, patellar
tendinopathy rates are similarly lower <15%, whereas Achilles
tendinopathy rates rise to ∼55% (Knobloch et al., 2008).

Given that the volume of high-jerk movements increases in elite
athletes, interventions to prevent or treat tendinopathies would have
a significant impact on elite performance. The goal of any interven-
tion to treat tendinopathy is to increase the content of directionally
oriented collagen and the density of cross-links within the protein
to increase the tensile strength of the tendon. The most common
intervention to treat tendinopathy is loading. The realization that
tendons are dynamic tissues that respond to load began when the
Kjaer laboratory demonstrated an increase in tendon collagen syn-
thesis, in the form of increased collagen propeptides in the periten-
dinous space 72 hr after exercise (Langberg et al., 1999). They
followed this up using stable isotope infusion to show that tendon
collagen synthesis doubled within the first 24 hr after exercise
(Miller et al., 2007). Therefore, loading can increase collagen
synthesis, and this may contribute to the beneficial effects of loading
on tendinopathy. Recently, combining loading with nutritional
interventions has been proposed to further improve collagen synthe-
sis (Shaw et al., 2017) and promote tendon and ligament healing
(Baar, 2018), and this possibility will be discussed below.

Vitamin C

Nutrition has been recognized as being essential for collagen
synthesis and tendon health for over 200 years. In the first
controlled nutritional trial ever recorded (1747 AD), the Scot
James Lind fed 12 sailors with scurvy one of six different inter-
ventions: no treatment, quart of cider, “twenty-five gulls” of vitriol,
six spoonfuls of vinegar, half a pint of seawater, or two oranges and
one lemon (Lind, 1757). The two sailors given the oranges and
lemon recovered within 6 days; however, the relationship between
the citrus fruit and scurvy continued to be debated for over
150 years. In 1959, Jerome Gross showed that guinea pigs on a
vitamin C deficient diet did not synthesize collagen at a detectable
level (Gross, 1959), making the molecular connection between
vitamin C and scurvy. The requirement for vitamin C in the
synthesis of collagen comes from its role in the regulation of prolyl
hydroxylase activity (Mussini et al., 1967), an enzyme required for
collagen cross-linking and export from the endoplasmic reticulum.
As vitamin C is consumed in the hydroxylation reaction, and
humans lack the L-gulono-γ-lactone oxidase enzyme required for
the last step in the synthesis of vitamin C (Drouin et al., 2011), we
need to consume 46 mg/day to maintain normal collagen synthesis.
Even though a basal level of vitamin C is required for collagen
synthesis, whether exceeding this value results in a concomitant
increase in collagen synthesis has yet to be determined. Therefore,
currently, there is no evidence that increasing vitamin C intake will
increase collagen synthesis and prevent tendon injuries.

Copper

Similar to vitamin C, copper is also required for enzymatic cross-
linking of collagen through its role as a cofactor for the enzyme
lysyl oxidase (Kagan & Li, 2003). Like vitamin C, copper
deficiency leads to impaired mechanical function of collagen-
containing tissues, such as bone (Jonas et al., 1993), leading to
an increase in fractures in people with copper deficiency (Paterson,
1988). However, the beneficial effects of copper are only seen in
the transition from deficiency to sufficiency (Opsahl et al., 1982).
There is no further increase in collagen function with increasing

doses of copper. Therefore, the goal for copper intake should
approximate the RDA of ∼1 mg·kg−1·day−1.

Glycine

Fibrillar collagens are a repeating tripeptide of glycine-X-proline/
hydroxyproline, where X represents any amino acid other than
glycine and proline. This sequence allows collagen to form the tight
triple helix that gives the protein its mechanical strength. Because
of the importance of glycine, some researchers have hypothesized
that increasing dietary glycine would have a beneficial effect on
tendon healing. Vieira et al. (2015a) showed that 21 days after a
collagenase injury to the Achilles tendon, rats on a diet containing
5% glycine demonstrated increased collagen and glycosaminogly-
can content as well as mechanical strength. The authors repeated
the results in a follow-up study (Vieira et al., 2015b), suggesting
that glycine may aide in the recovery of tendon function after
injury. However, consuming a diet where 5% of the calories come
from glycine is not realistic in an athletic population.

Gelatin/Hydrolyzed Collagen

Another potential source of the amino acids found in collagen
is gelatin or hydrolyzed collagen. Gelatin is created by boiling
the skin, bones, tendons, and ligaments of cattle, pigs, and fish.
Boiling releases large molecular weight (>100 kDa) proteins that
show limited solubility in water and form a gel after heating. Further
chemical or enzymatic hydrolysis of gelatin breaks the protein into
smaller peptides that are soluble in water and no longer form a gel.
Because both gelatin and hydrolyzed collagen are derived from
collagen, they are rich in glycine, proline, hydroxylysine, and
hydroxyproline (Shaw et al., 2017). As would be expected from a
dietary intervention that increases collagen synthesis, consumption of
10 g of hydrolyzed collagen in a randomized, double-blinded,
placebo-controlled study in athletes decreased knee pain from stand-
ing and walking (Clark et al., 2008). The decrease in knee pain could
be the result of an improvement in collagen synthesis of the cartilage
within the knee since cartilage thickness, measured using gadolinium
labeled magnetic resonance imaging, increases with long-term con-
sumption of 10 g of hydrolyzed collagen (McAlindon et al., 2011).
The role of gelatin consumption in collagen synthesis was directly
tested by Shaw et al. (2017). In this randomized, double-blinded,
placebo-controlled, crossover-designed study, subjects who con-
sumed 15 g of gelatin showed twice the collagen synthesis, measured
through serum propeptide levels, as either a placebo or a 5-g group.
Furthermore, when serum from subjects fed either gelatin or collagen
is added to engineered ligaments, the engineered ligaments demon-
strate more than twofold greater mechanics and collagen content
(Avey and Baar unpublished; Figure 1). Even though bathing the
engineered ligaments in serum rich in procollagen amino acids
provides a beneficial effect, this is a far cry from what would be
seen in people. However, these data suggest that consuming gelatin
or hydrolyzed collagen may increase collagen synthesis and poten-
tially decrease injury rate in athletes.

Other Nutrients

There is a myriad of other nutrients that are purported to improve
tendon/ligament function, including turmeric/curcumin, taurine,
arginine, bromelain, or boswellic acid. These and other nutraceu-
ticals have recently been reviewed by Fusini et al. (2016). Inter-
estingly, many of these nutrients are thought to decrease
inflammation, and the role of inflammation in tendinopathy in
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elite athletes remains controversial (Peeling et al., 2018). There-
fore, future work is needed to validate these purported nutraceu-
ticals in the prevention or treatment of tendon or ligament injuries.

Conclusions

Although injuries are going to happen in athletes, there are several
nutrition solutions that can be implemented to reduce the risk and
decrease recovery time. To reduce the risk of injury, it is crucial that
athletes do not have chronic low energy availability, as this is a
major risk factor for bone injuries. Cycling energy intake through-
out the year to allow race weight to be achieved, while achieving
adequate energy availability away from competitions, may be the
most effective strategy. It is also crucial for bone, muscle, tendon,
and ligament health to ensure that there are no dietary deficiencies,
especially low protein intake or inadequate vitamin C, D, copper,
n-3 PUFA, or calcium. This highlights the importance of athletes
having access to qualified nutrition support to help them achieve
their goals without compromising health. If an injury does occur,
one of the key considerations during the injury is to ensure
excessive lean muscle mass is not lost and that sufficient energy
is consumed to allow repair, without significantly increasing body
fat. It is crucial to understand the change in energy demands and, at
the same time, ensure sufficient protein is consumed for repair,
especially since the muscle could become anabolic resistant. In
terms of tendon health, there is a growing interest in the role of
gelatin to increase collagen synthesis. Studies are now showing that
gelatin supplementation can improve cartilage thickness and
decrease knee pain, and may reduce the risk of injury or accelerate
return to play, providing both a prophylactic and therapeutic
treatment for tendon, ligament, and, potentially, bone health. It
should finally be emphasized that, where possible, all of these
nutritional solutions should be explored in a “food first” manner,
rather than a reliance on supplements (Peeling et al., 2018). Where
supplementation is deemed necessary (e.g., diagnosed vitamin D
deficiencies), athletes should seek appropriate advice from quali-
fied staff with up-to-date knowledge of supplement contamination
and anti-doping regulations. Last but not least, more human-based
research is needed, ideally in elite athlete populations, on the
possible benefits of some macro- and micronutrients in the preven-
tion or boosted recovery of injured athletes. Given that placebo-
controlled, randomized control trials are exceptionally difficult to
perform in elite athletes (no athlete would want to be in a placebo
group if there is a potential of benefit of an intervention, combined

with the fact that the time course and pathology of the same injuries
are often very different), it is important that high-quality case
studies are now published in elite athletes to help to develop an
evidence base for interventions.
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